반응형
이번 글에서는 CMake를 사용하여 CUDA 기반의 GPU 가속 응용 프로그램을 빌드하고 설정하는 방법을 알아보겠습니다. GPU 프로그래밍은 고성능 계산, 머신 러닝, 그래픽스 등 다양한 분야에서 중요한 역할을 합니다. CMake를 활용하여 CUDA 코드를 효율적으로 관리하고 빌드 시스템에 통합하는 방법을 살펴보겠습니다.CUDA와 CMake의 통합CUDA는 NVIDIA에서 개발한 병렬 컴퓨팅 플랫폼으로, GPU를 활용하여 계산을 가속화할 수 있습니다. CMake는 CUDA를 지원하기 위한 다양한 기능을 제공하며, 이를 통해 CUDA 코드와 C++ 코드를 함께 빌드할 수 있습니다.CMake에서 CUDA 활성화CMake에서 CUDA를 사용하기 위해서는 프로젝트 설정에서 LANGUAGES에 CUDA를 추가합니..
안녕하세요! 지난 글에서 OpenCL 플랫폼과 디바이스 개념을 이해하고, 원하는 디바이스를 선택하는 방법까지 살펴봤습니다. 이제 본격적으로 커널(Kernel) 작성과 빌드 과정을 알아볼 차례예요. OpenCL 커널은 실제로 GPU나 CPU 등 디바이스에서 병렬 실행되는 코드로, 우리가 가속하고 싶은 연산의 핵심 부분이라고 할 수 있죠.이번 글에서는 다음 내용을 다룹니다.OpenCL 커널 기본 문법 소개호스트 코드에서 커널 빌드 방법 복습 및 확장인자 전달 및 메모리 관리 구조 이해CUDA 커널과 비교해 보는 코드 작성 차이점참고할만한 유튜브 자료 링크앞선 글에서 kernel.cl 파일 안에 간단한 add_one 커널을 작성해봤는데, 이번 글에서는 이보다 조금 더 다양한 형태의 커널 코드를 다뤄보면서 기본..
안녕하세요, 지난 글에서 OpenCL 개발환경을 준비하고 “Hello OpenCL!” 예제를 통해 간단한 프로그램을 실행하는 과정을 살펴봤어요. 이번 글에서는 본격적으로 OpenCL의 큰 그림을 더 명확히 그려볼게요. OpenCL은 플랫폼(Platform)과 디바이스(Device)라는 개념을 통해 다양한 하드웨어 리소스를 관리하고, 이를 프로그래머가 직접 선택하고 제어할 수 있는 구조를 가지고 있습니다. 쉽게 말해, 플랫폼은 특정 벤더나 특정 드라이버 환경을 대표하는 개념이고, 디바이스는 실제 연산을 수행할 수 있는 하드웨어(GPU, CPU, FPGA 등)를 가리켜요. CUDA가 NVIDIA GPU 하나를 전제로 간단한 API로 리소스를 추상화했다면, OpenCL은 다양한 하드웨어를 유연하게 다루기 위해..
안녕하세요! 이번 포스팅부터 OpenCL(Open Computing Language)을 활용해 GPU 가속 프로그래밍을 시작하려는 입문자 분들을 위해 총 10편에 걸친 시리즈를 진행하려고 해요.OpenCL은 GPU, CPU, FPGA 등 다양한 디바이스에서 병렬 계산을 지원하는 오픈 표준인데요. 흔히 비교되는 CUDA가 NVIDIA GPU를 염두에 둔 전용 기술이라면, OpenCL은 다양한 벤더와 디바이스에서 유연하게 활용할 수 있는 특징이 있어요. “어? 난 이미 CUDA에 좀 익숙한데?” 하는 분들도, 여기서 OpenCL을 배워두면 훨씬 넓은 하드웨어 지원 범위를 가질 수 있게 되는 셈입니다.이번 첫 글에서는 다음과 같은 내용을 담았습니다.OpenCL 개발 환경 준비(Ubuntu, Windows 참조..
내 블로그 - 관리자 홈 전환 |
Q
Q
|
---|---|
새 글 쓰기 |
W
W
|
글 수정 (권한 있는 경우) |
E
E
|
---|---|
댓글 영역으로 이동 |
C
C
|
이 페이지의 URL 복사 |
S
S
|
---|---|
맨 위로 이동 |
T
T
|
티스토리 홈 이동 |
H
H
|
단축키 안내 |
Shift + /
⇧ + /
|
* 단축키는 한글/영문 대소문자로 이용 가능하며, 티스토리 기본 도메인에서만 동작합니다.