반응형
강화학습(RL)을 다루다 보면, 다양한 알고리즘(DQN, PPO, SAC 등)을 일일이 직접 구현하고, 하이퍼파라미터를 조정하며, 환경을 실행하는 과정이 만만치 않다는 걸 실감하게 됩니다. 이전 시리즈에서는 PyTorch로 직접 RL 알고리즘을 구현해봤지만, 실제 실험 단계에선 이런 구현 부담을 덜어주는 라이브러리가 큰 도움이 됩니다.Ray RLlib는 그런 니즈에 부합하는 강력한 분산 강화학습 프레임워크입니다. RLlib은 다음과 같은 장점을 갖습니다.다양한 알고리즘 내장: DQN, PPO, SAC, A3C/A2C, IMPALA 등 대표적인 알고리즘을 기본 지원간단한 Config 기반 설정: 하이퍼파라미터, 환경 설정, 알고리즘 변형을 Config 딕셔너리로 쉽게 제어분산/병렬 학습 지원: Ray의 멀..
기존 DQN에서는 모든 경험을 동일한 확률로 샘플링합니다. 그러나 강화학습에서는 특정 경험(transition)이 학습 초기에는 별로 도움이 안 되지만, 나중에 정책이 개선되면서 가치가 달라지거나, 에이전트가 특정 상황에서 큰 TD 오차(Temporal-Difference Error)를 낼 경우 그 경험이 정책 개선에 더 크게 기여할 수 있습니다.우선순위 경험 리플레이(PER)의 핵심 아이디어는 TD 오차가 큰(즉, 현재 네트워크의 예측과 실제 타겟 간 차이가 큰) 경험을 더 자주 샘플링하는 것입니다. 이를 통해 에이전트는 정책 개선에 유용한 경험을 빠르게 재학습하고, 경험 데이터 활용 효율을 높일 수 있습니다.참고자료:Schaul et al., 2016. "Prioritized Experience Re..
DQN 계열 알고리즘의 핵심은 상태-행동 가치(Q-value)를 효과적으로 추정하는 것입니다. 지금까지의 네트워크는 상태를 입력받아 각 행동에 대한 Q값을 직접 출력하는 구조를 사용했습니다. 그러나 모든 행동에 대한 Q값을 별도로 추정하는 것은 비효율적일 수 있습니다. 상태 자체의 "가치(Value)"와, 그 상태에서 특정 행동을 선택함으로써 추가로 얻을 수 있는 "우위(Advantage)"를 분리하면, 공통적인 상태 가치를 학습하면서도 행동별 차이를 더 효율적으로 포착할 수 있습니다.Dueling DQN(Dueling Network Architecture for Deep Reinforcement Learning)에서는 Q(s,a)를 다음과 같이 분해합니다.Q(s,a) = V(s) + A(s,a) - 평..
이전 글에서 DQN을 구현해 CartPole 환경을 학습시켜보았습니다. DQN은 간단하고 효과적이지만, 여전히 다음과 같은 문제가 남아 있습니다.Q값의 과추정(Overestimation): DQN은 최대 Q값을 직접 사용하기 때문에, 노이즈나 학습 초기 불안정으로 인해 실제보다 높은 Q값을 선택하는 경향이 있습니다. 이로 인해 정책이 왜곡될 수 있습니다.데이터 효율성과 안정성 문제: 경험 리플레이를 사용하지만, 모든 transition이 동일한 확률로 샘플링됩니다. 또, Q값 계산 시 행동에 따른 Q분포를 좀 더 효율적으로 학습할 수 있는 구조적 개선도 가능할 것입니다.이러한 문제를 완화하기 위해 다양한 DQN 변형 알고리즘이 제안되었습니다. 그중 대표적인 두 가지를 소개하겠습니다.Double DQN (..
강화학습에서는 에이전트가 상태(State)마다 어떤 행동(Action)을 취해야 하는지 결정하기 위해 정책(Policy)을 개선해나갑니다. 앞서 1편에서 살펴본 랜덤 정책 에이전트는 전혀 학습을 하지 않고, 그저 무작위로 행동을 선택하기 때문에 성능이 저조했습니다. 이제는 "가치(Value)" 개념을 도입하여, 각 상태-행동 쌍이 얼마나 좋은지(미래 보상을 많이 얻을 수 있는지)를 평가하는 방식으로 정책을 개선할 실마리를 잡아봅시다.이번 글의 목표는 다음과 같습니다.가치기반(Value-based) 접근 개념 정리: Q함수(Q-value)를 통해 상태-행동 쌍의 가치를 정의Q학습(Q-learning) 아이디어 소개: 벨만(Bellman) 방정식을 이용한 Q함수 업데이트 개념(이론적 상세는 추가 자료 참조)..