[Ray RLlib로 강화학습 쉽게 사용하기] 1편: Ray와 RLlib 소개 및 환경 설정
강화학습(RL)을 다루다 보면, 다양한 알고리즘(DQN, PPO, SAC 등)을 일일이 직접 구현하고, 하이퍼파라미터를 조정하며, 환경을 실행하는 과정이 만만치 않다는 걸 실감하게 됩니다. 이전 시리즈에서는 PyTorch로 직접 RL 알고리즘을 구현해봤지만, 실제 실험 단계에선 이런 구현 부담을 덜어주는 라이브러리가 큰 도움이 됩니다.Ray RLlib는 그런 니즈에 부합하는 강력한 분산 강화학습 프레임워크입니다. RLlib은 다음과 같은 장점을 갖습니다.다양한 알고리즘 내장: DQN, PPO, SAC, A3C/A2C, IMPALA 등 대표적인 알고리즘을 기본 지원간단한 Config 기반 설정: 하이퍼파라미터, 환경 설정, 알고리즘 변형을 Config 딕셔너리로 쉽게 제어분산/병렬 학습 지원: Ray의 멀..