[PyTorch로 시작하는 강화학습 입문] 1편: 강화학습과 PyTorch 소개, 개발환경 준비, 그리고 첫 실행 예제
강화학습(Reinforcement Learning, RL)은 에이전트(Agent)가 환경(Environment)과 상호작용하며 보상(Reward)을 최대화할 수 있는 정책(Policy)을 학습하는 기계학습 분야입니다. 최근 딥러닝 기술과 결합되어, Atari 게임을 수준 높게 공략하거나 로봇팔 제어, 자율주행 의사결정, 바둑·스타크래프트 같은 복잡한 게임에서 인간 프로나 챔피언을 능가하는 성능을 선보이면서 큰 주목을 받았습니다.이 시리즈에서는 RL에 처음 입문하는 독자를 위해, 파이썬과 PyTorch를 활용해 기본적인 강화학습 알고리즘을 단계적으로 구현하고 실험해 볼 예정입니다. 이 과정을 따라가며 RL의 기본 구조와 PyTorch를 사용한 신경망 연산을 체득할 수 있습니다. 이번 글에서는 먼저 강화학습..